Many-Valued First-Order Logics with Probabilistic Semantics
نویسنده
چکیده
We present n-valued rst-order logics with a purely proba-bilistic semantics. We then introduce a new probabilistic semantics of n-valued rst-order logics that lies between the purely probabilistic semantics and the truth-functional semantics of the n-valued Lukasiewicz logics Ln. Within this semantics, closed formulas of classical rst-order logics that are logically equivalent in the classical sense also have the same truth value under all n-valued interpretations. Moreover, this semantics is shown to have interesting computational properties. More precisely, n-valued logical consequence in disjunctive logic programs with n-valued disjunctive facts can be reduced to classical logical consequence in n ?1 layers of classical disjunctive logic programs. Moreover, we show that n-valued logic programs have a model and a xpoint semantics that are very similar to those of classical logic programs. Finally, we show that some important deduction problems in n-valued logic programs have the same computational complexity like their classical counterparts.
منابع مشابه
Truth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملProbabilistic Logic: Many-valuedness and Intensionality
The probability theory is a well-studied branch of mathematics, in order to carry out formal reasoning about probability. Thus, it is important to have a logic, both for computation of probabilities and for reasoning about probabilities, with a well-defined syntax and semantics. Both current approaches, based on Nilsson’s probability structures/logics, and on linear inequalities in order to rea...
متن کاملReduction of Many-valued into Two-valued Modal Logics
In this paper we develop a 2-valued reduction of many-valued logics, into 2-valued multi-modal logics. Such an approach is based on the contextualization of many-valued logics with the introduction of higher-order Herbrand interpretation types, where we explicitly introduce the coexistence of a set of algebraic truth values of original many-valued logic, transformed as parameters (or possible w...
متن کاملProbabilistic and Truth-Functional Many-Valued Logic Programming
We introduce probabilistic many-valued logic programs in which the implication connective is interpreted as material implication. We show that probabilistic many-valued logic programming is computationally more complex than classical logic programming. More precisely, some deduction problems that are P-complete for classical logic programs are shown to be co-NP-complete for probabilistic many-v...
متن کاملProbabilistic and Truth-functional Many-valued Logic Programming Justus-liebig- Universit at Gieeen Ifig Research Report Probabilistic and Truth-functional Many-valued Logic Programming
We introduce probabilistic many-valued logic programs in which the implication connective is interpreted as material implication. We show that probabilistic many-valued logic programming is computationally more complex than classical logic programming. More precisely, some deduction problems that are P-complete for classical logic programs are shown to be co-NP-complete for probabilistic many-v...
متن کامل